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A problem of parallel machine scheduling with coordinated job deliveries is handled to minimize the makespan. Different jobs call
for dissimilar sizes of storing space in the process of transportation. A range of jobs of one customer in the problem have priority
to be processed on two identical parallel machines without preemption and then delivered to the customer by two vehicles in
batches. For this NP-hard problem, we first prove that it is impossible to have a polynomial heuristic with a worst-case per-
formance ratio bound less than 2 unless P�NP. +ereafter, we develop a polynomial heuristic for this problem, the worst-case
ratio of which is bounded by 2.

1. Introduction

Production and distribution operations are two key oper-
ational functions in a supply chain; it is critical to integrate
these two functions and schedule them jointly in a coor-
dinated manner so as to achieve optimal operational per-
formance [1]. However, in traditional scheduling problems,
it is always assumed that there are enough vehicles for
delivery of jobs that are finished with no time needed for
transportation. Unlike conventional scheduling, a schedul-
ing problem with two stages is investigated in the current
research, with the first stage for processing jobs on two
parallel machines while the second for delivering jobs that
are finished using two vehicles.

In integrated production and outbound distribution
scheduling (IPODS) problems, it is required to coordinate
scheduling, batching, and delivery decisions at all levels of
the supply chain in order to minimize the overall scheduling
and delivery cost [2]. In the last two decades, various IPODS
models have been widely studied. Chen [1] conducted a
comprehensive survey on these models. Based on the survey,
the problem of interest is regarded as an IPODS model of

jobs with general size and a finite quantity of vehicles.
+erefore, in the following, we just review a few closely
related research works. In recent years, some works on
IPODS models with parallel machines and equal-size jobs
were done, in which all the jobs have the same size. For
example, Hall and Potts [3] studied several models having
enough vehicles. In their models, all the finished products
are delivered to one customer. +e models with multiple
customers were also investigated in [4, 5]. Wang and Cheng
[6] ever studied a model with two identical parallel machines
and a single vehicle to minimize the makespan. In this
model, an unavailable interval existed on one of the ma-
chines due to preventive maintenance, and an unfinished job
can resume processing after the machine becomes available
again. +ey showed that the problem is NP-hard and pro-
posed a heuristic with a worst-case ratio of 5/3. Recently, Pan
and Su [7] developed an improved heuristic with a worst-
case ratio of 3/2. Obviously, for the models where the jobs
have generally different sizes, it will be considerably tougher
to resolve compared with models involving jobs of equal size
since the batching decision now involves bin packing, which
alone is NP-hard in the strong sense [8] in the case that it
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does not allow split delivery. Chang and Lee [9] took the lead
to research models involving jobs of general size. In ac-
cordance with their models, one can use only a vehicle for
delivery of jobs during the second stage. +ey proposed two
heuristics with worst-case ratio of 5/3 and 2, respectively, for
the models with single machine configuration and two
identical parallel machine configurations. After that, several
improved heuristics were proposed. For the model with
single machine configuration, He et al. [10] and Zhong et al.
[11] put forward a modified heuristic and a most feasible
heuristic with ratios in the worst case of 53/35 and 3/2 + ϵ,
where ϵ is positive and can be an arbitrary value approxi-
mating 0; for the model with two identical parallel machine
configurations, Zhong et al. [11] provided a heuristic with a
worst-case ratio of 5/3, and Su et al. [12] proposed a heuristic
with a worst-case ratio of 63/40, except for two particular
cases. For the model with more than one vehicle, Chen and
Pundoor [13] carried out a research study on a model having
enough vehicles and all jobs therein have their deadlines. For
the purpose of minimizing total cost for transportation, they
developed a heuristic for the model. Jiang and Tan [14]
designed a polynomial-time heuristic with a worst-case ratio
of 2 for the model with a single machine and two vehicles.
However, to the best of our knowledge, little attention is paid
on the models with identical parallel machines and a finite
number of vehicles not less than two.

+e problem we study is an extension of the model
studied by Jiang and Tan [14], in which the machine en-
vironment in the first stage is extended from one machine to
two identical parallel machines. +e problem in the research
is summarized as follows: for a cluster of customer’s jobs
with the number of n and independent from each other,
N � J1, J2, . . . , Jn􏼈 􏼉, each of which must be first non-
preemptively processed by one of the two identical parallel
machines, M1 and M2, in a manufacturing system and then
delivered to the customer. Job Jj, j � 1, 2, . . . , n, needs a
processing time of pj in the manufacturing system and has a
size sj which represents the physical space Jj as it is loaded in
vehicles. +ere are two homogeneous vehicles (V1 and V2)
that can be used for delivery of batched completed jobs
originally in the manufacturing system. +e capacity of each
of the vehicles is z. It indicates that one can arrange com-
pleted jobs to match the physical space of vehicles provided
the total size is smaller than z. One delivery batch refers to
jobs that are delivered all at once by the same vehicle. One
vehicle takes a time period of T, for transportation while
delivering a batch of jobs, a duration from the beginning
moment of the vehicle in delivery of the batch to that when it
goes back to the machine after the delivery. As for the goal, it
is to search for a schedule of handling jobs in manufacturing
systems, followed by delivery of completed jobs to customers
so as to minimize the time needed for all jobs in N waiting
for processing and delivery to customers. For ease of
analysis, makespan of a schedule is defined as Cmax. It is
duration from one of the vehicles accomplishing delivery of
the last batch to customers to the moment it goes back to the
manufacturing system. Under the condition, what we need
to solve is to search for a schedule that can minimize the
makespan.

Since so far as we know that we are the first to consider
the model with two machines and two vehicles, this paper
has two objectives. Our first objective is to analyze the
computational complexity of our model and provide some
optimality properties satisfied by the model. Also, the well-
known algorithms for similar models could not solve our
model. So, our second objective is to develop a fast heuristic
targeting the problem. Organization of the rest of the re-
search is shown as follows: Section 2 introduces notations,
along with several optimality properties of the problem of
interest at first. Section 3 provides a heuristic for the problem
of interest, followed by analysis of performance of the
heuristic in the worst case. Section 4 draws on conclusions.

2. Notations and Preliminaries

+e section introduces the following notations at first. +ese
notations are used uniformly throughout the paper:

P: total times for processing all jobs in a manufacturing
system, i.e., P � 􏽐

n
j�1pj.

As to a schedule δ for the problem, it is defined that
b(δ): total quantity of batches to be delivered in δ.
For each k � 1, . . . , b(δ), we define the following:
Bk(δ): kth batch delivered in δ.
Pk(δ) � 􏽐Jj∈Bk(δ)pj: sum of processing times of all the
jobs in batch Bk(δ).
σk(δ): time for a vehicle to depart from the
manufacturing system for delivering Bk(δ).
ρk(δ): time for preparation of Bk(δ), representing the
latest time for completing processing of jobs allocated
to Bk(δ). It is worth noting that in any possible
schedule, there is σk(δ)≥ ρk(δ).
Unless it is ambiguous, Bk(δ), Pk(δ), σk(δ), and ρk(δ)

are simplified as Bk, Pk, σk, and ρk, separately.
For the optimum schedule, it is defined that
C∗max: optimum makespan.
Cmax(M)∗: time moment at which machines complete
processing of the last job.
b∗: amount of batches delivered.

Several optimality properties of the problem are given as
follows. Because of straightforwardness of the conditions,
the proofs are omitted.

Lemma 1. An optimal schedule exists for a problem meeting
the following conditions:

(i) :ere is no idle time between the jobs processed on
any machine

(ii) For each delivery batch, all the jobs in the batch that
are processed on the same machine are processed
consecutively on that machine

(iii) Jobs assigned to one batch and processed on the same
machine can be processed on that machine in any
order
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Hence, only schedules that satisfy the above properties are
considered further.

Lemma 2. C∗max ≥max Cmax(M)∗ + T, (b∗/2)T􏼈 􏼉.

Clearly, our problem is NP-hard since a special case with
transportation time T � 0 is equivalent to solving the
classical two parallel machine makespan minimization
problems, which are NP-hard.

Lemma 3. It is impossible to have a polynomial heuristic with
a worst-case performance ratio bound less than 2 unless
P�NP.

Proof. We prove this by a reduction from the following
PARTITION problem, which is known to be NP-complete
[8].

PARTITION: Given n natural numbers a1, . . . , an, is
there a subset S⊆ 1, . . . , n{ } such that 􏽐i∈Sai � 􏽐i∉Sai?

Given this instance of PARTITION, we consider an
instance of our problem with n jobs, J1, . . . , Jn, where

pj � 0,

sj �
2aj

􏽐
n
i�1ai

z,

for j � 1, . . . , n.

(1)

As a subset S∗ ⊆ 1, . . . , n{ } satisfying 􏽐i∈S∗ai � 􏽐i∉S∗ai

can be attained. It is obvious that the above PARTITION
instance has an affirmative answer when and only when
there are two batches formed in the optimal schedule for
the instance. As to the schedule, jobs in Jj | j ∈ S∗􏽮 􏽯 and
Jj | j ∉ S∗􏽮 􏽯 are separately processed by machines M1 and

M2 followed by assignment to two different batches, each
of which is delivered by one vehicle, with the makespan of
Cmax � T. In contrast, it needs three batches or more for
the instance for any subset S⊆ 1, . . . , n{ } satisfying
􏽐i∈Sai ≠􏽐i∉Sai. One of the vehicles at least delivers two
batches, so the makespan of relevant schedule is
Cmax ≥ 2T.

It is assumed that there exists a polynomial heuristic for
our problem with worst-case ratio bound less than 2. For the
formation of two batches under the optimal schedule of the
instance, as has been noted, the optimal makespan is
C∗max � T. It is obvious that the presumptive algorithm is
able to search the optimal schedule all the time, as the
makespan Cmax � 2T when 3 batches are under demand.
+is is supposed to be a polynomial-time algorithm for
which the bound of a performance ratio in the worst case is
2. +erefore, through the reduction above, the algorithm is
able to resolve the PARTITION instance just in the poly-
nomial time, implying that P�NP, which contradicts our
claim that P≠NP.

+erefore, for the problem, there is no possibility for
obtaining a polynomial heuristic with a worst-case perfor-
mance ratio bound less than 2 unless P�NP. □

3. Heuristic

In this section, we first introduce the following algorithm
FFD (First Fit Decreasing) [15], which is a classical algorithm
for solving the bin-packing problem. It will be applied to
constitute batches in the heuristic proposed. Note that ve-
hicle capacity (z) and job sizes (sj) proposed in the research
underlay the algorithm FFD.

3.1. Algorithm FFD

Step 1: sort the jobs in a nonincreasing order of size (sj)
Step 2: assign the job with the largest size to B1

Step 3: For j� 2, . . ., n, if the jth largest job is considered,
then assign it to the lowest indexed batch such that the total
job size of the corresponding batch does not exceed z

Lemma 4 (see [16]). For an instance I of binning, assuming
that FFD(I) and OPT(I) are separate numbers of bins used
for the optimal solution and the solution obtained using the
FFD algorithm, we have FFD(I)≤ (3/2)OPT(I).

In the following, we will present a heuristic for the
problem and analyze its worst-case performance. +is
heuristic is described as follows.

3.2. Heuristic HA

Step 1: FFD algorithm is used to assign jobs to batches.
Supposing the amount of formed batches is bH.
Step 2: As to jobs in batch Bk, the total times for
processing them are calculated and denoted as Pk, for
k � 1, 2, . . . , bH. +e batches are retrieved so that
P1 ≤P2 ≤ · · · ≤PbH .
Step 3: Batches are assigned one after another from B1
to a machine having a lower load before assignment
(allocating jobs in one batch to the same machine). Jobs
in each batch are sorted according to a random order.
Step 4: +e first and second vehicles are supposed to
deliver all batches allocated to machines M1 and M2.
Each vehicle needs to distribute each finished batch
waiting for delivery whenever; in the case that there are
more than one batch finished under conditions that a
vehicle is available, the vehicle requires dispatching a
batch having the lowest index.

We first analyze the time complexity of heuristic HA.
Since it is well known that the time complexity of the FFD
algorithm is O(n2), it will take time period O(n2) in Step 1;
also, it will take O(n) times to obtain all Pk for
k � 1, 2, . . . , bH in Step 2; the job batch assignment will
cost at most O(n log n) in Step 3, and the batch delivery
will take at most O(n) in Step 4 depending on bH. So, we
have that heuristic HA has a time complexity of O(n2). It is
supposed that CH

max represents the makespan from heu-
ristic HA. Furthermore, in the solution of the heuristic, let
C(1)
max and C(2)

max represent time moments for finishing jobs
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sorted in the last two machines M1 and M2. +en,
Cmax(M)∗ � max C(1)∗

max , C(2)∗

max􏽮 􏽯. Also, define Cmax(M) �

max C(1)
max, C(2)

max􏽮 􏽯.

Lemma 5 (see [9]). Cmax(M)≤P≤ 2Cmax(M)∗.

Based on heuristic HA, batches are indexed in a non-
decreasing order of their processing times and are assigned
one by one to the machine that has a smaller load before the
batch is assigned. It can be shown easily that each batch with
an odd index is assigned to machine M1 and delivered by
vehicle V1; for batches having even indexes, they are allo-
cated to M2, followed by delivery using vehicle V2. Fur-
thermore, the delivery of a batch with a smaller index
happens earlier compared with that having a larger index.
Suppose that x and y are separate total times for dealing with
jobs allocated to the first and second batches in a solution
attained using heuristic HA, that is, x � P1 and y � P2.

Corollary 1. x≤ (2Cmax(M)∗/bH); y≤ (2Cmax(M)∗/bH−

1) if bH ≥ 2.

Proof. Because P1 ≤Pk, for k � 1, . . . , n, according to Step 2,
we have bHP1 ≤P and P1 + (bH − 1)P2 ≤P if bH ≥ 2, which
mean that x � P1 ≤ (P/bH)≤ (2Cmax(M)∗/bH) and
y � P2 ≤ (P/bH − 1)≤ (2Cmax(M)∗/bH − 1) if bH ≥ 2. □

Lemma 6. bH ≤ (3/2)b∗.

Proof. It is assumed that b∗L represents the amount of
batches when an optimal method is used to allocate jobs to
batches, instead by algorithm FDD in Step 1. Obviously,
there is b∗L ≤ b∗. Meanwhile, bH ≤ (3/2)b∗L based on Lemma 4,
which suggests bH ≤ (3/2)b∗. □

Lemma 7. :e schedule attained using heuristic HA is
considered.

(i) On conditions that a batch Bk exists for machine M1
so that σk � ρk and k≥ 3, there is σk+2i � ρk+2i, for
i � 0, 1, 2, . . .

(ii) In the case that machine M2 is assigned with a batch
Bq so that σq � ρq and q≥ 4, there is σq+2i � ρq+2i, for
i � 0, 1, 2, . . .

Proof

(i) Recall that batches are indexed and delivered in a
nondecreasing order of Pj, ∀j. Note that ρk � ρk− 2 +

Pk and σk � max δk− 2 + T, ρk􏼈 􏼉. Since δk � ρk, σk− 2 +

T≤ ρk � ρk− 2 + Pk by Lemma 1(i). Since σk− 2 ≥ ρk− 2,
there is Pk ≥T. +us, Pk+l ≥T for l � 0, 1, . . . , b − k.
It follows that σk+2 � max σk + T, ρk+2􏼈 􏼉

� max σk + T, ρk + Pk+2􏼈 􏼉 � ρk + Pk+2 � ρk+2. Apply-
ing the same argument repetitively, there is
σk+2i � ρk+2i, for i � 0, 1, 2, . . .

(ii) Similar to (i). □

Corollary 2. Consider the schedule obtained by heuristic HA.
If CH

max >Cmax(M) + T, then CH
max � max x + (bH + 1/2)T,􏼈

y + (bH − 1/2)T} if bH is odd and CH
max � y + (bH/2)T if bH

is even.

Lemma 8. If CH
max � Cmax(M) + T, then CH

max ≤ 2C∗max.

Proof

CH
max

C∗max
≤

Cmax(M) + T

Cmax(M)∗ + T
≤
2Cmax(M)∗ + T

Cmax(M)∗ + T
≤ 2. (2)

□
Corollary 3. If bH � 1 or bH � 2, then CH

max ≤ 2C∗max.

Lemma 9. If bH is odd and bH ≥ 3, then CH
max ≤ 2C∗max.

Proof. If CH
max � Cmax(M) + T, then CH

max ≤ 2C∗max according
to Lemma 8. Now, suppose that CH

max >C(M) + T. By Cor-
ollary 2, CH

max � max x + (bH + 1/2)T, y + (bH − 1/2)T􏼈 􏼉 if
bH is odd. □

Case 1. CH
max � x + (bH + 1/2)T.

CH
max

C∗max
�

x + bH + 1/2( 􏼁T

C∗max
≤

2Cmax(M)∗/bH( 􏼁 + bH + 1/2( 􏼁T

C∗max

�
2

bH
·
Cmax(M)∗ + bH + 1( 􏼁bH/4( 􏼁T

C∗max

≤
2

bH
·
Cmax(M)∗ + T

Cmax(M)∗ + T
+

2
bH

·
bH + 1( 􏼁bH/4( 􏼁T − T

b∗/2( )T

�
2

bH
+

bH + 1( 􏼁bH − 4
bHb∗

≤
2

bH
+

bH + 1( 􏼁bH − 4
(2/3) bH( )

2 �
3
2

+
7bH − 12
2 bH( )

2 ≤ 2.

(3)

Case 2. CH
max � y + (bH − 1/2)T.

CH
max

C∗max
�

y + bH − 1/2( 􏼁T

C∗max

≤
2Cmax(M)∗/bH − 1( 􏼁 + bH − 1/2( 􏼁T

C∗max
�

2
bH − 1

·
Cmax(M)∗ + bH − 1( 􏼁/2( 􏼁

2
T

C∗max

≤
2

bH − 1
·
Cmax(M)∗ + T

Cmax(M)∗ + T
+

2
bH − 1

·
bH − 1( 􏼁/2( 􏼁

2
T − T

b∗/2( )T

�
2

bH − 1
+

bH − 1( 􏼁
2

− 4
bH − 1( )b∗

≤
2

bH − 1
+

bH − 1( 􏼁
2

− 4
(2/3) bH − 1( )bH

<
2

bH − 1
+
3
2
.

(4)

Clearly, (CH
max/C

∗
max)< 2 if bH ≥ 5. Because bH is odd and

bH ≥ 3, we only need to consider the case with bH � 3. If
bH � 3, then
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CH
max

C∗max
≤

2
bH − 1

+
bH − 1( 􏼁

2
− 4

bH − 1( )b∗
� 1. (5)

+erefore, we have CH
max ≤ 2C∗max if bH is odd and bH ≥ 3.

Lemma 10. If bH is even and bH ≥ 4, then CH
max ≤ 2C∗max.

Proof. If CH
max � Cmax(M) + T, then CH

max ≤ 2C∗max according
to Lemma 8. Now, suppose that CH

max >Cmax(M) + T. By
Corollary 2, CH

max � y + (bH/2)T if bH is even. Hence,
CH
max

C∗max
�

y + bH/2( 􏼁T

C∗max
≤

2Cmax(M)∗/ bH − 1( 􏼁( 􏼁 + bH/2( 􏼁T

C∗max

�
2

bH − 1
·
Cmax(M)∗ + bH − 1( 􏼁bH/4( 􏼁T

C∗max

≤
2

bH − 1
·
Cmax(M)∗ + T

Cmax(M)∗ + T
+

2
bH − 1

·
bH − 1( 􏼁bH/4( 􏼁T − T

b∗/2( )T

�
2

bH − 1
+

bH − 1( 􏼁bH − 4
bH − 1( )b∗

≤
2

bH − 1

+
bH − 1( 􏼁bH − 4

(2/3) bH − 1( )bH
<

2
bH − 1

+
3
2
.

(6)

Obviously, (CH
max/C

∗
max)< 2 if bH ≥ 5. Because bH is even

and bH ≥ 4, we only need to consider the case with bH � 4. If
bH � 4, by Lemma 6, we have b∗ � 3 or b∗ � 4.

If bH � 4 and b∗ � 3, then

CH
max

C∗max
≤

2
bH − 1

+
bH − 1( 􏼁bH − 4

bH − 1( )b∗
�
2
3

+
8
9
< 2. (7)

If bH � b∗ � 4, then

CH
max

C∗max
≤

2
bH − 1

+
bH − 1( 􏼁bH − 4

bH − 1( )b∗
�
2
3

+
8
12
< 2. (8)

+erefore, we have CH
max ≤ 2C∗max if bH is even and bH ≥ 4.

From Corollary 3, Lemma 9, and Lemma 10, we
have □

Theorem 1. (CH
max/C

∗
max)≤ 2.

According to Lemma 3 and+eorem 1, we can conclude
that our heuristic is a best possible polynomial heuristic for
the problem.

4. Conclusion

+e study investigated the scheduling problem involving two
identical parallel machines with coordinated delivery of jobs
to minimize the makespan, which can be viewed as an
IPODS model involving two parallel machines that are
completely the same, as well as general-size jobs. We first

showed that the problem is NP-hard and then provided a
polynomial heuristic for the problem. We also proved that it
is impossible to have a polynomial heuristic for this problem
with a worst-case performance ratio bound less than 2 unless
P�NP; besides, the performance ratio of our heuristic in the
worst case has a bound of 2, which means that our heuristic
is the best possible one. Models involving more than two
vehicles or machines are expected to be studied in future
research.
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